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Received 18 October 1989 

Abstract. In a five-dimensional Fersion of non-Abelian gauge theory the existence is 
demonstrated of domain wa//s trapping particle excitations in the extra dimension, compac- 
tified of S’. Domain walls are soliton-like solutions of the Nahm-Bogomolny equations 
for a Yang-Mills system dimensionally reduced to ( 1  + 1)  dimensions. The soliton-like 
solutions can also be interpreted either as s fr ings  in a ( 2  + 1 )-dimensional Yang-Mills-Higgs 
model or as membranes in a ( 3  + 1 )-dimensional pure Yang-Mills theory. 

1. Introduction 

In a very interesting paper [ 13, Rubakov and Shaposhnikov have proposed an  unusual 
procedure for dimensional reduction. Instead of compactifying extra dimensions as in 
standard schemes based on the original Kaluza-Klein idea [ 2 ] ,  they deal with a flat 
( 3  + N + 1)-dimensional spacetime; particles are confined in the extra N dimensions 
by a potential well arising from a domain wall but are free in Minkowski space, IF!’,’. 
The A@‘ model in (3 + 1 + 1) dimensions illustrates such a situation, where the potential 
well coming from the domain walls corresponds to the kink solution in the extra 
dimension. 

In this paper we consider a ( 3  + 1 + 1)-dimensional Yang-Mills system sharing 
characteristics of both the Rubakov-Shaposnikov and Kaluza-Klein procedures. The 
model presents ‘periodic’ kinks as solutions of the Bogomolny- Nahm [3] equations 
in the extra dimension, which in our case is angular, producing domain walls in the 
real world. They appear as periodic trajectories in the fundamental subsystem of 
Saviddy’s Yang-Mills classical mechanics [4] and  at the limit where the radius of the 
ring in the extra dimension tends to infinity, the situation covered by Rubakov and  
Shaposhnikov in the A Q 4  model, they form the separatrix from unbounded motion. 

In  the W K B  approximation the particle excitations are given by the spectrum of the 
Hessian at the periodic kink solutions; the Hessian in the extra coordinate proves to 
be related to the differential operator of the Lam6 equation for n = 1 [ 5 ] .  Variations 
in the remaining coordinates lead to free propagation in Minkowski space and, 
restricting ourselves to real eigenvalues of the Lami  equation, three kinds of excitations 
exist. (a )  Particles trapped by potential wells V, = 2k’ sn2 cp - d , ,  which are free 
particles in Minkowski space. (b)  Particles with higher energy than V, which escape 
through the p dimension. (c) Tachyons forced by the topology of the model via the 
Ljusternik-Schnirelman theory [6]. 

Another completely different physical interpretation for this kind of soliton-like 
solution can be given; the solutions can be thought of either as strings in the ( Y M H ) > + ,  
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model or as membranes of finite thickness in the pure ( Y M ) ~ + ,  model. Via the Wilson 
criterion they provide a mechanism for confinement of both colour-electric and colour- 
magnetic charges in (2 + 1 )-dimensional gauge theories. The second alternative shows 
the existence of membranes in non-Abelian gauge theories from which one can obtain 
an extremely rich particle spectrum by considering its quantum fluctuations. The 
dimensional reduction process is slightly different from that previously described; it 
is convenient to put space and time dimensions on the same footing; to consider 
periodic boundary conditions and only at the end to choose the time coordinate by 
analytic continuation to the imaginary axis. 

Fermions will be analysed by solving the Dirac equation in the background of the 
domain walls. Fermionic zero modes will exist, which freeze the fermion propagation 
in the extra dimension or cause a strong violation of the fermion number by a mechanism 
reminiscent of the Witten proposal for superconducting strings [ 7 ] .  

The paper is organised as follows. In section 2 we describe the dimensional reduction 
to be applied to the gauge field contribution in the QCD action on a five-dimensional 
(infinite) cylinder. At the same time, a similar dimensional reduction for the A Q 4  
model, just for the sake of comparison, is also explained. In section 3 periodic kink 
solutions are found by solving first-order equations arising as Bogomolny equations 
for the reduced system. They are expressed in terms of elliptic functions but an analysis 
of their hyperbolic limit and its physical origin is performed. The dependence on a 
steepness parameter is also explicitly shown. Section 4 is devoted to studying the 
particle spectrum. We also unveil the topological origin of the tachyonic excitations 
and suggest a loophole for avoiding them. In section 5 we discuss the different 
appearances as physical objects of the periodic kink, i.e. membranes or strings, depend- 
ing on the dimensional reduction scheme chosen. Finally, in section 6 the effects of 
our solutions on fermions are briefly considered. We conclude with some remarks 
about the possibility of similar solutions in other physical models. 

2. Dimensional reduction and Bogomolny equations 

We shall start by showing how our mechanism of dimensional reduction works in the 
( 3  + 1 + 1)-dimensional A Q 4  model given by the action 

M = (0, 1,2,3,4} goo = - g,, = -g44 = + 1 g,wN = O  if M # N .  

becomes 
We introduce dimensionless variables, 9 = ( m / f i ) Q  and x,, = (l /m)x,.  The action 

and in the case where the scalar field Q depends only on the x4 coordinate, it reduces 
to S = L3TE(m,  A ) ,  where L3 and T are respectively normalisation volume and time, 
and E ( m ,  A )  is 
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The variational problem defined by E has a first integral, the 'particle' energy 

(2.3) 

We shall 'renormalise' C to zero by introducing an elliptic parameter k2, related 
to the 'particle' energy by C = +( 1 - k')'/( 1 + k 2 ) ,  and defining a new 'particle' coordin- 
ate 4 = [2k2/(1 + k2)]"2@ and a new 'particle' time p = ( l / m ) x , t .  Then (2.3) 
reduces to 

or 

(2.4b) 

The second form, (2.4b), leads to a generalised version of the famous Bogomolny 
equation for solitons [8]. We could also obtain (2.4) in a closer way to the original by 
writing E ( A ,  m )  in the form 

The solutions of (2.4) are the absolute minima of E ( A ,  m )  for a given k. We now move 
to the (3 + 1 + 1)-dimensional QCD action 

E M %  = c ? M b k  - $ ? h b M  -ig[bM, b\1 Q u  =c?u - ig[b,  (2.6) 

a = 1,2,  . . . , 8  Ys = YOYl Y271 
( Ta)+ = - T" EM 'v = T a  

for the SU(3) gauge group. We also introduce dimensionless variables 4 = (m/g)A 
and = (l /m)xM and the pure gauge action becomes 

In the case where the gauge potential AM do not depend on the spatial coordinates 
xi the action S can be written as S = L31(g, m )  where Z(g, m )  is, in the temporal gauge 
A. = 0, given by 

dx,(-tr FO4Fo4+tr FI4F,,+tr FqE,) 
(2.8) 

F~~ = a o ~ ,  F1, = -a,A, -$A,, A4] F,, = -i[A,, A,]. 

+ The 'particle' energy, coordinate and time are not to be confused with the field energy, E ( A ,  m i ,  field 
coordinates, x,, and field time, xo. The reason for using these names is the dimensional reduction we will 
perform below. 
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I ( g ,  m )  is the action for a field theory in (1  + 1) dimensions with field equations 

d,,aaAj = 0 d;A,+[A,D,A,] = O  
(2.9) 

a tA,  - i[d,A,, A;] - [A4,  [A,, A,]] -a iA,  = 0. 

Static solutions of (2.9) are critical points of the function E ( g ,  m )  

dx,(2trD4A,D,A,-tr[A,,  A,I[A,,A,l)  (2.10) 

such that for solutions of 

the action is L’TE(g, m ) .  Notice that E ( g ,  m )  is the Saviddy ‘action’ for Y M  classical 
mechanics with ‘Euclidean’ time [4]. In the axial gauge A, = 0 the first integral of the 
‘particle’ energy has the form 

dA, d A  
dx, dx, 

E = tr- --: tr[A;, A,][A;, A;] 

or  

(2.12a) 

(2.126) 

in terms of the time cp and gauge potentials rescaled by ( 1  + k 2 ) - ’ ” .  As in the scalar 
case, E ( g ,  m )  may be written U la Bogomolny 

and the value E = 0 is attained by solutions of 

-- d A t -  *&,,,,[Ai, AA]. 
dcp 

(2.13) 

(2.14) 

The set of equations (2.14) are thus the Bogomolny equations for the (1  + 1)- 
dimensional model governed by Z ( g ,  m )  but they are also the Nahm equations [9] 
which arise in the problem of determining the moduli space of BPS monopoles, which 
are themselves solutions of the 3~ Bogomolny equations. 

They have been studied as the self-duality equations in Y M  classical mechanics [3] 
and  it is in this context where the elliptic parameter, much more hidden than in the 
scalar case, arises. To unveil its physical meaning we shall consider the ‘maximal’ 
embedding of SU(2) in SU(3)  given by the generators 
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where E,,, are step operators for the simple roots a’  = (1/2, & / 2 ) ,  a’= (1/2, d3/2)  
of SU(3) and  H “  are the generators in the Cartan subalgebra. In terms of the Gell-Mann 
A matrices it can easily be shown that E ;  = iA3, E, = (1/d)( E ,  + E - )  = ( i / a ) ( A , +  A,) 
and  E2 = (l/g?)( E ,  - E 1 = (1/t3)( A ,  - A ? )  satisfies [ E , ,  E,] = the SU(2) commu- 
tation relations, simply by knowing the SU(3)  structure constants Alk: [ A , ,  A,]2i f ; ,kAk.  

The ansatz A,(cp) = E,f;(cp),  non-summation in i, converts (2.14) into the Euler 
equations for the spinning top: df,/dcp = - 2 f 2 f l  cyclically. These are, in Saviddy’s 
scheme, the Bogomolny equations of the fundamental subsystem of Yhi classical 
mechanics: considering A:‘ as a 3 x 3 matrix, our ansatz implies that the off-diagonal 
components are zero. The problem is mathematically equivalent to the motion of a 
‘particle’, with coordinates f ; ,  moving in three dimensions under the potential U = 
-+(fiff+fffi+ffff) .  This is a ‘chaotic’ dynamical system [4], there are bounded 
trajectories which are not periodic, but the bounded solutions of the Euler equations, 
which are completely integrable, are periodic. An elliptic parameter appears by identify- 
ing the functions f ;  with the components of the angular velocity up  to factors, the 
inertia momentum components, f ;  = I , @ , .  In our  case, we have I 2  = 13,  I ,  = 0 and the 
rotation angle 6 = 2 p .  Then k’= 1/12 is the inverse of the inertia momentum and 
the limit k’= 1 is the separatrix between bounded and unbounded motion of the 
spinning top. 

3. Elliptic solutions and their hyperbolic limit 

We shall now consider the solutions of the equations we have discussed in the previous 
section. In  the scalar case, a solution to (2.4) which we will call elliptic kink is (see 
figure 1) 

(3.1) 
The solution is periodic with periodicity dictated by the elliptic parameter k 2  

4 K ( c p ,  k )  = sn(cp, k ) .  

through the condition 4K (9, k )  = 4K (cp + 4K ( k ) ,  k )  where 

is the complete elliptic integral of the first time. In terms of more physical quantities 
the periodicity can be read from the relation m L / (  1 + k 2 )  = 4 K ( k ) .  Because K ( 0 )  = n / 2  

Figure 1. The elliptic kink 
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and K ( l )  = a3, 2 7 s  m L s c o :  there is no room for periodic solutions if the radius of 
the ring is too small!? The energy density is 

it is localised around the north pole (cp =0)  and the south pole (cp = 2 K ) ,  with a width 
depending on m (see figure 2) ,  and there is a vacuum energy, the constant term, due 
to the renormalisation of C. 

The solution (3.1) corresponds to the dynamical problem determined by (2.2); it 
is the trajectory depicted in figure 3 of a particle moving under the potential - U. The 
limit k2 = 1 is the limit of infinite radius because then K ( 1 )  = CO or L = CO. The solution, 
which ceases to be periodic, 

(3.3) 

is a hyperbolic function; the separatrix between bounded and unbounded motion of 
the particle. 

In any case there is a topological charge as a function of k' 

cn2 cp dn' cp -- ~ QT(k2)=  dcp - 
2 1 - k 2  J ( 1 2 t k i 2  

Figure 2. Energy density up to a factor and up to a constant. 

(3.4) 

Figure 3. Periodic trajectorq corresponding to the elliptic kink. 

+ This observation is due to A Actor. 
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which is in general infinite by integrating cp between -a and CC. It is, however, finite 
if we restrict ourselves to a fundamental period [0 ,4K (k ) ]  or, better, to a half-period 
[ - K ,  K ] .  Observe that when the Bogomolny bound is saturated the energy is propor- 
tional to QT(k2). In the limit k2 = 1 we get the topological charge of the usual kink, 
Q'(1) = 1. Therefore, as seen from the (3 + 1 + 1)-dimensional model, the solution will 
be a domain wall obtained by spatial translations of the localised energy density around 
the north pole in the interval [-L,  L] .  In the limit k 2 =  1 we get the Rubakov- 
Shaposhnikov domain wall. 

The main idea of this paper is that Nahm equations (2.14) should be understood 
as I D  Bogomolny equations in the (1 + 1)-dimensional model with dynamics given by 
Z(g, m ) .  Thus, their solutions are kinks, or solitons, in those models and domain walls 
in the original gauge systems. The solution proposed in [ lo]  in terms of the Jacobi 
elliptic functions (see figure 4) 

Af(cp) = - E l k  sn cp AF(cp) = iEzk cn cp A:(cp) = i E ,  dn cp (3 .5 )  

closely resembles the elliptic kink of the scalar model. It is periodic, Al<(cp) = 
A: (cp + 4 K  (k ) ) ,  with periodicity in the &, variable given by mL/ (  1 + k2) '  ' = 8 K  ( k )  
for 4 7  G mL G 00. It describes a periodic trajectory of the fundamental subsystem of 
YM classical mechanics and represents a domain wall in the (3 + 1 + 1)-dimensional 
Y M  system of finite thickness, determined by the parameter m, of colour magnetic fields 

FF2= -E,k2sn cp cn cp 

FF2 = E2k sn cp dn cp 

F:?=iE,kcncpdncp 

F:, = -E ,k  cn cp dn cp 

F,"? = -iE2k sn cp dn cp 

F:, = iE,kzsn cp cn cp. 

(3.6) 

E(g, m )  can be easily computed for our solutions. By saturating the Bogomolny 
bound the only contribution to (2.13) is the second integral, which must be 'topological' 
in origin; in fact, it is, because 

= i tr( F,,&,,,F,,) = 2k2(1 - k2 sn4 cp)  (3.7) 

so that the integrand in E ( g ,  m )  is proportional to the second Chern density and 

E(g ,  m ) = 4 Q T ( k z ) = 8 k z  dcp(1-k'sncp). I 
f t  

(3.8) 

I 
Figure 4. Elliptic YU k i n k .  
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As in the scalar case, translations of the energy density in spatial dimensions 
(although by (3.7) the density is concentrated around the north and  south poles) 
produce the domain walls. The hyperbolic limit k' = 1 ( 1' = 1)  is more involved. Then 
the solution is not periodic: 

(3.9) 

and  its topological charge 

QT( I )  = dx,( 1 - tanh' x,) = 4 (3.10) 

which is fractional, tells us that it is a meron-like configuration:. As in the scalar kink 
case, the hyperbolic solution is a separatrix from unbounded motion, k'> 1. There is 
an  important difference, however. In  the scalar case the set of constant solutions of 
(2.4) is discrete. In the Y M  case constant matrices which commute with each other are 
also solutions of (2.14), a continuous set homeomorph to S' which plays an important 
r6le in connection with the stability of the kink-type solutions to be analysed in the 
next section$. 

j 

4. Particle spectrum: the Lame equation 

To study the particle spectrum in the W K B  approximation one must consider the Hessian 
operator arising from second variations of S at critical points taken as classical 
backgrounds 

The linearised equations for small deformations are 

(4.2) 

Because of x,,-invariance, the solution is a superposition of wavefunctions of the 
kind ,yw(x) = e'"''i)V(x, p)  where 7 is such that 

(4.3) 

i it would be exactly a mean if the dependence of the magnetic fields on  the other coordinates h e r e  of the 
6-function type.  

From the solution (3.51 one  obtains nev, solutions by applhing the sbmmetry transformations of the 
problem; essentially there exists inbariance under tNo copies of SOi31, the first acting on the 'external' 
indices A,  + a, ,A,  with a E SOi3 ), the second acting on the Lie algebra SO(3)  generated by the E, .  the affine 
freedom +c + a+c + p and ,  finall), the inbariance under the Weyl g roup  of the S U ( 3  1 root diagram. 
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Also, due  to x-invariance, ~ ( x ,  c p )  = 5 ( d ' p / 2 w )  e'P'"6(cp) f is a solution of (4.3) if 
6(p) is an eigenfunction of the Sturm-Liouville operator h(cp)  = -d2/dcp'+64:(cp) - 2 ,  
and the spectral problem one needs to solve is 

.+6k' sn' cp - ( 1  + k')  6,(cp) = A 2 6 , ( c p )  (4.4) 

which is the n = 2 generalised Lam6 equation [5], the dispersion relation for the original 
small fluctuation ,y being w' = /PI'+ A'. 

We are dealing with quantum motion of a particle in the periodic potential V( c p )  = 
6k'sn' cp - ( 1  + k').  The restriction of sn cp to real values is understood; this is required 
when one recognises the elliptic kink as a periodic trajectory of a particle. The 
differential operator in (4.4) is thus a Hermitian operator and the spectral condition 
for A [ 5 ]  

A'=  (1  + k 2 )  - k' sn2 a l  - k'sn' a,-2 cn ds a1 cn a2 ds a2 (4.5) 
where a i  and a' are two complex spectral parameters, is admissible only for those 
values of the a ,  which give real A.  The spectral parameters are linked by the relationship 

s n a , c n a ,  d n a , + s n a 2 c n a 2 d n a ,  
sn2 a ,  - sn2 a: 

= O  (4.6) 

determining the momentum of the travelling waves through the identity ip = 
-2z=, Z ( a , ) ,  where Z ( a , )  is the Jacobian zeta function. The eigenfunctions are 

(4.7) 

where H and 0 are the first two Jacobi theta functions [ 5 ] .  

momentum. The boundaries are critical values, with no  propagation at all$, 
There are three allowed bands, real momentum, and  two forbidden ones, imaginary 

A 6, 

, a - t - , - ( l + k ' )  
e ,  = 1 + k' - 2- 6,(cp) = cn- p - 

E + ( 1 + k') 
e 2 = 3 k 2  
e3=3 

(4.8) 

2 
e4+ ( 1  + k') 

E ~ =  1 + k ' i -24 '1 -  k'+ k' 6,(q I = sn2 cp - 

the allowed and forbidden bands being [ e , , ,  e , ] ,  [ E ' ,  e3], [e,, a31 and [ e l .  E ~ ] ,  [e j ,  e4] 
(see figure 5). 

We see that there are three types of fluctuations. 
( i )  The first is 

,y(xO,x,cp)= 6 , ,~ (cp )exp( -p .x+ iwx0)  
(4.9) w 2  = p?' E , ,  e,, E [ E l  3 e21 or [ E 3 9  E41  or e,, = El) 

the corresponding particles being confined inside the wall. 

+ This computat ion,  and  the general analysis of the spectrum of the Lame equation, are d u e  to J M Cervero.  
$ Needless to sa) U and  p are  dimensionless;  to find g and  p one  simply multiplies bq m. 
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Figure 5. Band structure of the spectral problem (4.4). The allowed bands are shaded 

(ii) The second is 

(4.10) 

These particles are not confined; they move in the x4 direction, tunnelling through 
the wall. 

(iii) Similar to the previous case, the particles corresponding to A'> e4 are com- 
pletely free and escape observation, travelling in the fourth dimension. 

Taking the Kaluza-Klein viewpoint, by which one understands the extra dimensions 
as describing internal properties of the particles, electric charge, for instance, fluctu- 
ations in those quantum numbers are not allowed in the first type. The other cases, 
particles with no fixed electric charge etc, would not be physical. In the hyperbolic 
limit k' = 1 the Rubakov-Shaposhnikov situation is recovered. The spectral condition 
reduces to 

A2=4(tanh a , + t a n h  az ) '=4+p ' .  (4.1 1) 

Because Z ( a , ) l k : = l  = tanh a,, the 'continuous' eigenfunctions are 

6,(cp)=e'P"(cp'-3ip tanh cp-1+3tanh2 cp) (4.12) 

and the first two allowed bands collapse to the two bound states of the 'kink' potential 

In the Y M  case the dimensional reduction procedure described in section 2, on the 

~ ( x ) = - D ~ D ~ + ~ ~ ~ ~ [ F ~ , \  (4.13) 

[ I l l .  

usual 'Hessian' operator 

yields 

h ( x ,  c p ) =  -D,D'+A,A,+2[d,A,-ie,, ,A,Ak]a, (4.14) 

where the a! are the Pauli matrices. At the periodic kink solutions, (4.14) takes the form 

d' 
dcp 

h ( p )  = - 7 + 2 k 2  sn' cp - ( E : +  k 2 E t )  (4.15) 
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a Sturm-Liouville operator h = -(d'/dcp')Z + V(cp) where V(cp) is the periodic potential 

. (4 .16)  1 (2k'sn'-  l )k ' /2  -k'/2 0 
-k'/2 ( 2 k ' s n 2 - l ) k 2 / 2  0 i o  0 2k' sn2 - h' 

V(cp) = 

After the above experience with the scalar model we know that the spectral problem 
h$* (cp)  = A'$, ( c p )  will be relevant to the particle spectrum of the Y M  system and hence 
we solve it by diagonalising V(cp): 

-d2/dcp' + 2k' sn - k' 0 
0 -d'/dcp'+2k'sn'- 1 0 
0 -d'/dcp' -2k'  sn2 - 1 - k3 i 

(4 .17)  

the n = 1 Lam6 equation appearing for the three critical values k', 1, 1 + k'. We shall 
classify the solutions of (4 .17)  into three types: 
( a )  ah"(cp)=[ dn : cp ) a-l+h?(cp)=[d:cp) 8-l(cp)=( : ) 

al(cp)=(s;cp) a k 2 ( c p l = [ s ; c p )  a;;Jw=[ sn : cp 1. 
dn 40 

(b )  ~ l - h ' ( ~ )  = [':') a;f1(p) = (THY! 6 - h 2 ( ( P )  = [cn:cp) 

These are eigenfunctions for the special values A' = - 1 ,  - 1  + k', -k', 0,  0, 0, k2,  

(c) There are also bunds given by the spectral conditions 
1 - k', 1 but restricted to A' being real. 

7 -  A: 7 -  - -k' sn' a (4 .18)  A' - k' - k' s n 2  A: = 1 - k' sn' a 

for a complex parameter a which defines the momentum of the eigenfunctions 

(4 .19)  

through the condition Z ( a )  =ip. In all three cases one has an allowed band, Z ( a )  
purely imaginary, between the two first special eigenvalues; a forbidden one, Z (  a )  



3152 J M Guilarte 

purely real, between the second and  third special eigenvalues; and, finally, a n  allowed 
infinite band for values of A' higher than the third. The situation, easier than the 
previous one  in the scalar model in the sense that we are dealing with the n = 1 
generalised Lam6 equation, is depicted and  summarised in figure 6. 

In this case the Rubakov-Shaposhnikov analysis is more complicated. The whole 
Hessian presents three kinds of particle excitations. (a )  The first has the form A , ( q ,  x) = 

(d2p/2w)aAJcp)e,( p )  e'''"x with aAC, in an  allowed band of positive energy. These 
represent gluons with polarisation e,( r )  which escape observation through the non- 
observable internal dimension, some of them by the tunnel effect, others by free motion. 
(b)  Particles with aA<, (9) in a forbidden band or  in the boundary, p = 0, of the allowed 
bands, and  the energy greater than zero. These are the real gluons we know to exist 
in the real world confined inside the wall according to the corresponding aA,. Their 
dispersion relations in w 2  = 1 r/ '+ A i .  (c)  Particles with of negative A'.  These are 
tachyons (see figure 7 ) .  

A clear understanding of the topological origin of the existence of tachyons, and  
hence of the unstability of periodic kinks, will provide a loophole for avoiding tachyonic 
pollution. Our  claim is that tachyons appear as a consequence of the topology of the 
configuration space (e 

%={set o f J ; :  S ' + R l f ; ( q )  = f ; (q  + 4 K )  and E ( g ,  m )  < +E}. 

It is a very well known fact that rk(  (e) = rk(A) [ 2 ] ,  the order-k homotopy group 
of (e is equal to rk(A) ,  where ,.U is the vacuum orbit, the subset of % for which 
E ( g ,  m )  = 0 

Akowod bondr: 

R o U *  K 

Allowtd bonds: 

R o  u s 0  

Forbiddon bands; 

I m q  * 0 

= { f ,  = e"' E S,', , = R/Z, f 2  =fi = o} .  

1: 
1- hz 

0 0 0 
I ma Ima - k l  ma 

- I d  - 1  

1: 
1- hz 

0 0 0 
I ma Ima - k l  ma 

- 1  

I I 

1 
1- k* 

0 0 0 
ta 

-1' 

Figure 6. Energy bands in the Y M  case as a function of the complex parameter a 
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I I 

a. b. 

K 2 K  3K 4K 'Q 

C .  

Figure 7. The potential wells in 14.17). The shaded areas correspond to allowed bands 

This is the set of constant solutions for which the potential energy of the fundamental 
subsystem of Y M C M  is zero. However, due to the fact that our functions J ;  take values 
really in R/Z, A is homeomorphic to SI. Thus T , (  E) = nl (A)  = Z and the configuration 
space is non-simply connected. 

The link between non-simply connectivity and saddle points-notice that because 
of (4.17) the periodic kinks are saddle points of E ( g ,  m ) ,  the tachyonic fluctuations 
obeying the directions of steepest descent-is provided by Ljusternik-Schnirelman 
theory [ 6 ] .  We can construct a closed loop in % 

A,( cp, T) = iE2 sin m( 1 -.f:( cp))k 

A3(  cp, r )  = iEj sin m( 1 - k ' f f f (  c p ) )  

(4.20) 

which is non-contractible. It can be easily proved (see [ 121) that for 7 = 0 = 1 E ( g ,  rn, 7) 

is a minimum while E ( g ,  m, 4) is a maximum as a function of r. For r =  O =  1, the 
constant solution minimises E ( g ,  m )  and the same can be proved for the periodic kink, 
filz(cp) = sn cp, at T = $ .  The loop (4.20) is therefore non-contractible and  the reason 
why Af(cp) is a saddle point is the topology of %. 

The previous discussion may be interpreted in the following way: the dimensional 
reduction developed amounts to a spontaneous symmetry breakdown of the gauge 
symmetry; the gluons acquire a mass A i ,  with a vacuum orbit S' and hence a Goldstone 
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boson whose dynamics is governed by a kinetic term $ ( ~ c u / c ~ ( D ) ~  hidden in E(g, m ) .  By 
adding a U( 1) gauge field associated with the gauge transformation a’( p) = 
a(p)+P(p) ,  x ’ ( ( ~ ) = x ( p ) + i  d p / d p ,  and substituting the kinetic term by i ( d a / d p +  
ix(  cp))?, we fix the U( 1) freedom by picking a ‘unitary’ gauge. There is thus no longer 
the freedom of choosing any point of S’ as a vacuum state and the topology of the 
configuration space, modified by adding the new gauge field, is trivial, the tachyons 
disappearing. 

We end this section by showing a non-obvious link between the periodic kink of 
the Y M  system and the elliptic kink of the A44 model. The ansatz 

makes the spinning top  equations tantamount to 

(4.22) 

the Bogomolny equations for the elliptic kink. This is remarkable for two reasons: ( i )  
the limit between periodic and unbounded behaviour of the asymmetric top is traced 
back to the same limit in a very simple mechanical system; ( i i )  kinks are solutions of 
a dimensional reduction of the self-duality equations of the four-dimensional Yang- 
Mills system, in a similar sense to  BPS magnetic monopoles and  vortices [ 131. Moreover, 
the ansatz (4.21) means that the fundamental subsystem of Y M C M  contains as integrable 
subsystem one which is equivalent to a generalisation of the MSTB model, three scalar 
fields with interactions given by [ 121 

U - :( 4;+ 4: - 1): - a (  4:+ 4:) 

the unstable kink of this model corresponding to the periodic kink in YM.  

5. Chromo-electric and chromo-magnetic membranes and strings 

The periodic kink solution described in the previous section can be interpreted as 
having another physical meaning. A different choice of the character of the coordinates 
will d o  the job. Consider now the Y M  action defined on a 4-torus T5 

where p is a (angular) spatial coordinate and  where we choose one of the cp,, i = 1 ,2 ,3 ,  
let us say p3, as ‘Euclidean’ time. The Pontryagin number is 

In the axial gauge A, = 0 and  considering only gauge potentials which depend on p, 
the self-duality equations reduce to 
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where F,,, = dA,,/dcp and  F+,,) = -i[A, , A,!]. These equations are mathematically 
identical to (2.14) and  thus they admit 

(5.4) 

as solutions of the periodic kink type. These kinks carry both colour-magnetic fields, 
F,*,, F,,,c,, a,  p = 1,2, and colour-electric fields, Fqq3, Fqa,,, if c p 3  is analytically 
continued to normal time, as given by (3.6). Keeping the independence in the cp<, 
coordinates and  translating the solutions in these directions produces a ‘membrane’ 
of constant energy density which can be made as thin as we wish in the cp coordinate 
by varying the parameter m. Notice that we can reshuffle the coordinates cp, cp, , c p 2  to 
obtain membranes in planes orthogonal to any of them. 

Due to the stability analysis previously performed, which is also valid with this 
new interpretation of the solution, we know that, besides the elementary excitations, 
the quantum version of the reduced Y M  model possesses one eigenstate of the Hamil- 
tonian corresponding to the quantum kink [ 141. One may therefore obtain quantum 
membranes in the Y M  spectrum which have a quantum behaviour of their own according 
to Polyakov’s philosophy [15]. 

There is still another interesting possibility of dimensional reduction (different 
choice of the character of the cp)). Let us consider everything in the previous situation 
to be independent of cp7 and let us choose A,, = 4 where 4 is a map from T’ in S’, 
i.e. a Higgs field in the Prasad-Sommerfield limit. The action (5.1) reduces to 

AbI(cp) = - E l k  sn cp A:,(cp) = iE,k cn cp A:,(?) = iE, dn  cp 

and the magnetic charge, coming from the Pontryagin number, see [14], is 

P = ;  J dcp dcp, dcpz t r ( F u , , P * 4  + Fq,,D,14+ F,,.D*?d). ( 5 . 6 )  

The self-duality equations, now the Bogomolny equations for monopoles, 

are again equivalent to equation (2.14), in the gauge A, = 0 and when both A,<, and  
4 are only functions of cp. The periodic kink, now translated into cp, or  c p 2 ,  depending 
on which coordinate we take as Euclidean time, is a string carrying both colour-electric 
and  colour-magnetic fields (see figure 8).  The electric and  magnetic configuration 

Figure 8. A Wilson loop formed b) two pieces of strings; both of them are colour-electric 
and colour-magnetic tubes. 
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shown in figure 8 is created by the Wilson and 't Hooft operators 

dA,* E ,  =- 
c dcp 

A ( C )  = T r  P exp( i I (A, dcp+AVI dcp,)) 

B ( C ) = Tr P exp ( i I ( E ,  dcp + E,, d cp I 1) 
( 5 . 8 )  

= -i[Aq1 , A,*]. 
C 

Because the colour-electric and colour-magnetic fluxes in C form tubes analogous 
to those existing in Type-I1 superconductivity, due to the existence of the periodic 
kinks, both A ( C )  and B ( C )  satisfy the area law criterion of confinement. In other 
words [ 161, the system presents both colour-electric and colour-magnetic order. 

6. Further comments 

We shall devote this last section to discussing how the model can account for massless 
fermions in a natural way and to explaining how this kind of structure may exist in 
other physical models. 

The key idea for the existence of massless fermions in the model is taken from a 
similar situation in the ( I + I ) D  Jackiw-Rebbi model [17]; in the presence of a kink 
there are fermionic zero modes. In our model the Dirac equation 

iTM DM+ = 0 rs = Y5 (6.1) 

for chiral fields (LL = $( 1 + y5)+  depending only on the cp coordinate, in the presence 
of periodic kinks reduces to 

where a, /3 = 1,2 ,3  are 'colour' indices. It can be easily proved that 

where Am cp = cn cp + i sn cp, are solutions of (6.2). Thus, a fermionic zero mode, the 
colour triplet 

(6.4) 

exists in the presence of periodic kinks. The massless fermion fields in the cylinder 
will have the form 

and are thus confined inside the wall while freely propagating in Minkowski space. 
If we look at the solutions (6.3) from the point of view of the models where the 

periodic kinks have real physical meaning as strings or membranes, we find massless 
fermions at their cores. As in the Rubakov effect [ 181, a strong violation of the fermionic 
number can be produced by our strings or membranes, a mechanism reminiscent of 
the Witten proposal for superconducting strings [7]. 
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As a final comment there is hope of obtaining these fascinating structures in other 
kinds of physical models. For example, gauge theories with a gauge group SU(2), like 
the Weinberg-Salam model, have the same kind of periodic kinks with a particle 
spectrum given by the n = 4 Lame equation. In the opposite sense, SU(5) G U T  would 
permit periodic kinks with a particle spectrum based on the much more difficult case 
of the n = 2 Lame equation. 
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